A new Gamma Knife radiosurgery paradigm: tomosurgery.

نویسندگان

  • X Hu
  • R J Maciunas
  • D Dean
چکیده

This study proposes and simulates an inverse treatment planning and a continuous dose delivery approach for the Leksell Gamma Knife (LGK, Elekta, Stockholm, Sweden) which we refer to as "Tomosurgery." Tomosurgery uses an isocenter that moves within the irradiation field to continuously deliver the prescribed radiation dose in a raster-scanning format, slice by slice, within an intracranial lesion. Our Tomosurgery automated (inverse) treatment planning algorithm utilizes a two-stage optimization strategy. The first stage reduces the current three-dimensional (3D) treatment planning problem to a series of more easily solved 2D treatment planning subproblems. In the second stage, those 2D treatment plans are assembled to obtain a final 3D treatment plan for the entire lesion. We created Tomosurgery treatment plans for 11 patients who had already received manually-generated LGK treatment plans to treat brain tumors. For the seven cases without critical structures (CS), the Tomosurgery treatment plans showed borderline to significant improvement in within-tumor dose standard deviation (STD) (p <0.058, or p <0.011 excluding case 2) and conformality (p < 0.042), respectively. In three of the four cases that presented CS, the Tomosurgery treatment plans showed no statistically significant improvements in dose conformality (p <0.184), and borderline significance in improving within-tumor dose homogeneity (p <0.054); CS damage measured by V20 or V30 (i.e., irradiated CS volume that receives > or =20% or > or =30% of the maximum dose) showed no significant improvement in the Tomosurgery treatment plans (p<0.345 and p <0.423, respectively). However, the overall CS dose volume histograms were improved in the Tomosurgery treatment plans. In addition, the LGK Tomosurgery inverse treatment planning required less time than standard of care, forward (manual) LGK treatment planning (i.e., 5-35 min vs 1-3 h) for all 11 cases. We expect that LGK Tomosurgery will speed treatment planning and improve treatment quality, especially for large and/or geometrically complex lesions. However, using only 4 mm collimators could greatly increase treatment plan delivery time for a large brain lesion. This issue is subject to further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long term effects of Gamma knife Radiosurgery for treatment of cerebral arteriovenous malformations

 Abstract Background: The Gamma Knife Radiosurgery (GKR) is an established management option for Cerebral Ar-teriovenous Malformations (AVMS). Therapeutic benefits of radiosurgery for arteriovenous malformations are complete obliteration of nidus with minimal neurological deficit. Methods: Radiosurgery was performed between February 2003 and April 2010 at Kamraniye day clinic, Teh-ran, Iran, us...

متن کامل

Cyberknife Radiosurgery – A New Treatment Method for Image-guided, Robotic, High-precision Radiosurgery

Cyberknife Radiosurgery – Overview Cyberknife technology is based on radiosurgical principles that have been in clinical practice for 30 years. Radiosurgery is the precise application of a high (tumour-destructing) dose of radiation in a precisely defined target volume, while protecting the surrounding healthy tissue. During radiosurgery, many radiation beams from different directions intersect...

متن کامل

Nursing perspective of gamma knife of treatment

Gamma knife is a new noninvasive method for treatment of patient with brain tumors. &lrm;Another name of this procedure is steriotatic radiosurgery.&lrm;&rlm; &rlm;This computerized advanced &lrm;technique was implicated by a team including neurosurgeon, neuroradialogist, oncologist, and &lrm;a nurse. This method is used for treatment of certain brain tumors and lesions. The benefits are &lrm;l...

متن کامل

بررسی بقا بر اساس سیستم نمره‌بندی GPA در مبتلایان به متاستازهای مغزی درمان شده با رادیوسرجری گامانایف

Abstract Background: This study was done to define the role of Graded Prognostic Assessment (GPA) score for predicting overall survival in patients diagnosed with brain metastases undergoing Gamma-knife radiosurgery. Materials and methods: Patients diagnosed with brain metastases who were candidates for Gamma-knife radiosurgery entered this cross sectional study between 2003 and 2011. Clin...

متن کامل

Rivaling paradigms in psychiatric neurosurgery: adjustability versus quick fix versus minimal-invasiveness

In the wake of deep brain stimulation (DBS) development, ablative neurosurgical procedures are seeing a comeback, although they had been discredited and nearly completely abandoned in the 1970s because of their unethical practice. Modern stereotactic ablative procedures as thermal or radiofrequency ablation, and particularly radiosurgery (e.g., Gamma Knife) are much safer than the historical pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2007